An Integrated Treatment Scheme for Removing Salinity and Toxicity from Waters Produced from Coal-Bed Methane Wells

Pacific Northwest National Laboratory Idaho National Eng. & Env. Laboratory **University of Texas at El Paso Double Eagle Petroleum Company**

> **NGOTP** November 20, 2002

CBM Produced Waters

Produced Water Vol. Forecast 2011

Powder River Basin: 2 x 10¹⁰ bbl

(TDS: 270 – 2010 ppm)

- > Potential for beneficial reuse.
- Vol Increases economic impacts of disposal options.
- Need to demonstrate a range of water management **USEPA: 2001** options.

"... the cumulative CBM produced water impacts and issues must be resolved now!" Schneider 2001, Montana DEQ

Salinity Range

100 – 170,000 ppm

Management Options

- Surface Discharge
- Evaporation
- Wetlands
- Reinjection
- ❖ Beneficial Uses Need **Salinity and Toxicity** Reduction
 - Watering Livestock
 - Irrigation
 - Potable water

Beneficial Use of CBM Produced Waters

- Increasing demand for Livestock/Irrigation and Potable water.
- **Current Technologies:** *MSF, MED, VC, ED, FD*
 - **▶** Greater Capital Cost
 - **▶** Energy Intensive Higher Operating Costs
 - >Water Cost: ~ \$0.27 \$0.40/bbl*
- Need CBM Water Treatment Technology
 - > Reduced Capital Cost
 - **▶Lower Energy Input & Operating Costs**
 - >Treated Water @ < \$0.10 \$0.15/bbl

*Source: Davis (1993) CBM Produced Water Management Guide, GRI-93/0116, Gas Research Institute, Chicago

Technology Selection and Integration

Salinity-Gradient Solar Pond

What Can SGSP System Deliver?

- **❖ Desalinazation:** 1400 − 240,000 ppm
- ❖ Process Heat Oil Recovery (Crude Oil /Brine Separation)
- Waste Brine Processing

Baseload Power for **Remote Locations**

❖ Deliver Thermal Energy at ?T 50 °F

Salinity-Gradient Solar Pond at UTEP

System Performance

Influent Salinity: 1400 – 240,000 ppm

Reduction >99% Salinity, Chloride, Sulfate, Sodium, Calcium

Treated Water Cost*

\$0.08 - \$0.10/bbl

- Industrial Process Heat Delivery (Commercial Manufacturer): since 1983
- **❖ Power Generation: 1986**
- ❖ Desalination: 1987
- ❖ Zero Discharge Desalination: 2001

*Source: Esquivel (1991) Economic Feasibility of Utilizing Solar Pond Technology... Masters Thesis, UTEP

Freeze Desalinization

System Performance*

Influent Salinity: 1400 – 5000 ppm

Reduction

❖ Salinity 80 − 90%

❖ SAR 65%

❖ COD 85%

❖ TOC 60%

❖ NO₃+NO₂ 95%

❖ Desalinized Water 84%

❖ Treated Water Cost \$0.05/bbl

*Source: Boysen et al. 1999, 2002. Bureau of Reclamation, US Dept of Interior.

Self-Assembled Monolayers on Mesoporous Silica (SAMMS) Technology

Adsorbs large quantities of metal and metalloids from water

Loading: $\sim 40 - 600 \text{ mg/g SAMMS}$

Kinetics: ~99.9% in 5 min.

Selectivity: Kd $\sim 10^3 - 10^8$ ml/g

SAMMS Type	Contaminant
thiol:	Cd, Cu, Pb, Hg, Ag
Cu-EDA:	As, Cr, Se, Mo, Tc
M-thiol:	I, Br
AP, PP, HOPO:	Th, U

Science, 276, 1997; Advanced Materials, 10, 1998 (cover); 1998 R&D 100 Award; Reports in Scientific American, Popular Science, Discover, Business Week, Chem & Engr. News, Nikkei Science

An Integrated Treatment System for Removing Salinity and Toxicity

Integrated Treatment System

Treated Water A Valuable CO-PRODUCT

Cast Effortive / con 10/hhl

CBM Water, Now a BY- PRODUCT

- > Flexibility in Integration
- Scalable System
 - Number of Wells
 - Degree of Water Quality
 - Other Applications: Oil, Gas, Mining Effluents

Little or No Disruption to Existing CBM Well-Operating Paradigm

Integrated Treatment System

Schedule

- ❖Year 1
 Lab-scale Performance Tests
 (CBM Sample Waters)
 Review Data with Industrial Partner for Go-No Go Decision
- ❖ Year 2
 Toxicity Removal Tests
 Integrated Pilot-scale System Design
 Review Test Data and the System
 Design: Go No Go Decision
 - ❖ Year 3 Field Demonstration in Collaboration with Industrial Partners.

Integrated Treatment System

Research Team

- **PNNL**
 - **Technology and System Integration, Toxic Removal Testing & Design**
- ❖ INEEL Freeze Desalinization – Testing and System Design
 - UTEPSalinity-Gradient Solar Pond –Testing and Design
 - ❖ Double Eagle Petroleum Co. Industrial Partner Review Results: Input for Go-No Go Decision after 1st and 2nd Year

Synthesis of Nanoporous Ceramics Substrate

SAMMS Material for Selective binding of Inorganic contaminant Species

+

Self-assembled monolayers

Nanoporous Ceramic substrate

US Patent # 6426326, 2 pending

TCLP Data for Hg-loaded thiol-SAMMS

